Errata

Vincenzo Piacente, Daniela Ferro and Giuseppe Della Gata, Vaporization enthalpies of five odd-numbered (C_7 to C_{15}) α, ω -alkanediols (*Thermochim. Acta*, 232 (1994) 317–321).

There were several errors on page 319. The corrected version of this page is produced overleaf.

TABLE 2

Comparison between experimental and calculated molar vaporization enthalpies at 298 K for evenand odd-numbered C₆ to C₁₆ α, ω -alkanediols

Number n of C atoms	T _{av} / K	$\frac{\Delta_{\rm vap}H_{\rm m}^{\rm e}(T_{\rm av})}{\rm kJmol^{-1a}}$	$\Delta_{\rm vap} H^{\circ}_{\rm m}(298~{ m K})/{ m kJ~mol^{-1}}$					
			Experimental		Calculated			
			Our work ^c	Ref. 3	Ref. 11	Ref. 12	Ref. 13	R ef. 15
6	341	87.0 <u>±</u> 2.0 ^ь	91 ± 3	89.8 ± 0.7 ^d	87.4	89.5	87.0	90.5
7	341	92.4 ± 1.5	97 ± 2	96.6 ± 0.6	92.4	94.5	91.7	95.6
8	356	101.1 ± 1.6 ^b	108 ± 3	103.2 ± 1.1 ^d	97.3	99.6	96.3	100.7
9	360	104.4 ± 3.4	112 ± 4	112.3 ± 1.3 ^d	102.3	104.6	101.0	105.8
10	364	112.4 ± 2.3 ^ь	120 ± 3	114.1 ± 1.2 ^d	107.3	109.7	105.7	110.9
11	365	123.0 ± 1.9	131 ± 3		112.3	114.7	110.4	116.0
12	379	119.4 <u>±</u> 2.7 ^ь	132 ± 4		117.2	119.8	115.1	121.1
13	372	122.0 ± 3.8	132 ± 4		122.2	124.9	119.8	126.2
14	386	128.1 <u>+</u> 2.9 ^ь	141 ± 4		127.2	129.9	124.5	131.3
15	390	124.3 ± 1.9	138 ± 3		132.2	135.0	129.2	136.4
16	398	130.5 \pm 1.8 ^ь	146 ± 3		137.2	140.0	133.9	141.5

^a The errors are standard deviations. ^b From our previous work [2]. ^c The errors are estimated. ^d Derived from $\Delta_{sub} H^{*}_{m}(298 \text{ K})$ and $\Delta_{fus} H^{*}_{m}(T_{fus})$ also reported in ref. 3.

the following equations were derived:

for 1,7-heptanediol

 $\log(p/kPa) = 11.89 \pm 0.20 - (4826 \pm 80)/(T/K)$

for 1,9-nonanediol

 $\log(p/kPa) = 13.22 \pm 0.30 - (5453 \pm 180)/(T/K)$

for 1,11-undecanediol

 $\log(p/kPa) = 15.33 \pm 0.30 - (6425 \pm 100)/(T/K)$

for 1,13-tridecanediol

 $\log(p/kPa) = 14.53 \pm 0.20 - (6375 \pm 200)/(T/K)$

for 1,15-pentadecanediol

 $\log(p/kPa) = 14.27 \pm 0.20 - (6492 \pm 100)/(T/K)$

The associated uncertainties represent estimated errors. Comparison can only be made with the vapour pressures of 1,7-heptanediol and 1,9-nonanediol measured by Knauth and Sabbah at 323 K [3]. Our average values at this temperature $(8.89 \times 10^{-4} \text{ and } 2.18 \times 10^{-4} \text{ kPa}, \text{ respectively})$ are about twice as high as theirs $(4.61 \times 10^{-4} \text{ and } 1.12 \times 10^{-4} \text{ kPa}, \text{ respectively [3]})$.